A machine-learning approach for predicting B-cell epitopes.
نویسندگان
چکیده
The immune activity of an antibody is directed against a specific region on its target antigen known as the epitope. Numerous immunodetection and immunotheraputics applications are based on the ability of antibodies to recognize epitopes. The detection of immunogenic regions is often an essential step in these applications. The experimental approaches used for detecting immunogenic regions are often laborious and resource-intensive. Thus, computational methods for the prediction of immunogenic regions alleviate this drawback by guiding the experimental procedures. In this work we developed a computational method for the prediction of immunogenic regions from either the protein three-dimensional structure or sequence when the structure is unavailable. The method implements a machine-learning algorithm that was trained to recognize immunogenic patterns based on a large benchmark dataset of validated epitopes derived from antigen structures and sequences. We compare our method to other available tools that perform the same task and show that it outperforms them.
منابع مشابه
Precise Predictions of Linear B Cell Epitopes in Protean 3D
B cell epitopes–the part of an antigen recognized by an antibody–are conformational in nature; however, accurately predicting these epitopes is difficult for proteins without a known three-dimensional (3D) structure. DNASTAR presents the NeoClone method, a machine learning approach that improves the ability to predict linear B cell epitopes (a peptide segment) using only sequence-based informat...
متن کاملPredicting flexible length linear B-cell epitopes.
Identifying B-cell epitopes play an important role in vaccine design, immunodiagnostic tests, and antibody production. Therefore, computational tools for reliably predicting B-cell epitopes are highly desirable. We explore two machine learning approaches for predicting flexible length linear B-cell epitopes. The first approach utilizes four sequence kernels for determining a similarity score be...
متن کاملB and T-Cell Epitope Prediction of the OMP25 Antigen for Developing Brucella melitensis Vaccines for Sheep
Brucellosis, produced by Brucella species, is a disease that causes severe economic losses for livestock farms worldwide Due to serious economic and medical consequences of this disease, many efforts have been made to prevent the infection through the use of recombinant vaccines based on Brucella outer membrane protein (OMP) antigens. In the present study, a wide range of on-line prediction sof...
متن کاملMachine learning approaches for prediction of linear B-cell epitopes on proteins.
Identification and characterization of antigenic determinants on proteins has received considerable attention utilizing both, experimental as well as computational methods. For computational routines mostly structural as well as physicochemical parameters have been utilized for predicting the antigenic propensity of protein sites. However, the performance of computational routines has been low ...
متن کاملImproved Method for Linear B-Cell Epitope Prediction Using Antigen’s Primary Sequence
One of the major challenges in designing a peptide-based vaccine is the identification of antigenic regions in an antigen that can stimulate B-cell's response, also called B-cell epitopes. In the past, several methods have been developed for the prediction of conformational and linear (or continuous) B-cell epitopes. However, the existing methods for predicting linear B-cell epitopes are far fr...
متن کاملIn silico prediction of B cell epitopes of the extracellular domain of insulin-like growth factor-1 receptor
The insulin-like growth factor-1 receptor (IGF-1R) is a transmembrane receptor with tyrosine kinase activity. The receptor plays a critical role in cancer. Using monoclonal antibodies (MAbs) against the IGF-1R, typically blocks ligand binding and enhances down-regulation of the cell-surface IGF-1R. Some MAbs such as cixutumumab are under clinical trial investigation. Targeting multiple distinct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular immunology
دوره 46 5 شماره
صفحات -
تاریخ انتشار 2009